Curriculum
Course: Data Science Bootcamp- Bridging the Skil...
Login
Text lesson

1. Detailed Pandas Study

1. Introduction to Pandas

  • What is Pandas?: Open-source library for data structures (Series, DataFrames) and tools for data manipulation.

  • Key Features:

    • Data cleaning, merging, sorting, and aggregation.

    • Handling missing data (imputation).

2. Core Data Structures

  • Series: 1D labeled array (like a column in Excel).

  • DataFrame: 2D table (collection of Series with rows/columns).

3. Creating DataFrames

  • From Lists/Dictionaries: Convert Python structures to DataFrames.

  • From CSV/Excel: Read external files (pd.read_csv()).

4. Data Exploration

  • Basic Inspection:

    • head(), tail(): View first/last rows.

    • shape: Dimensions (rows, columns).

    • info(): Data types and missing values.

  • Descriptive Statistics:

    • describe(): Summary stats (mean, min, max, etc.).

5. Data Manipulation

  • Adding/Removing Columns: Modify DataFrames dynamically.

  • Modifying Data:

    • Change column types (astype()).

    • Calculate derived columns (e.g., BMI from height/weight).

  • Boolean Indexing: Filter rows conditionally (e.g., df[df['Age'] > 30]).

6. Handling Missing Data

  • Detection: isnull(), notnull().

  • Imputation: Fill or drop missing values.

7. Advanced Operations

  • GroupBy: Aggregate data by categories.

  • Merging DataFrames: Combine datasets (joins).

  • Pivot Tables: Summarize data interactively.

8. Practical Applications

  • Real-world Datasets: Clean and analyze CSV/Excel files.

  • Performance Tips: Vectorized operations for speed.

Prerequisites: Basic Python (lists, loops).
Tools: Pandas, NumPy.
Access the full lesson here: https://colab.research.google.com/drive/1bQaP9gZpE-HI8uZ7wi0LoFoiOLeN_6RA?usp=sharing

Review Your Cart
0
Add Coupon Code
Subtotal