Objective: Master NumPy arrays and statistical operations for efficient data analysis in Python.
Key Concepts:
Why NumPy?: Fast numerical computations on arrays/matrices.
Core Features:
Multidimensional arrays (ndarray).
Vectorized operations (no loops needed).
Â
Methods Covered:
From Lists/Tuples:
Special Arrays:
np.zeros((3,3)): 3×3 array of 0s.
np.ones((2,2)): 2×2 array of 1s.
np.random.rand(2,2): Random values (0–1).
Data Types:
Specify with dtype (e.g., int, float, bool).
Convert types:Â .astype('float').
Key Attributes:
shape: Dimensions (e.g., (3,3) for a 3×3 matrix).
size: Total elements.
dtype: Data type.
Mathematical Operations:
Element-wise: +, -, *, /, **.
Aggregations: .sum(), .mean(), .max().
Â
Techniques:
1D Arrays: arr[0], arr[1:3].
2D Arrays:Â arr[0,1]Â (row 0, column 1).
Boolean Indexing:Â arr[arr > 3].
Reshaping:
arr.reshape(2,3): Convert 1D to 2D.
arr.flatten(): Convert to 1D.
Essential Functions:
Central Tendency:
np.mean(), np.median().
Spread:
np.std() (standard deviation), np.var() (variance).
Percentiles:Â np.percentile(arr, 50)Â (median).
Random Distributions:
Normal:Â np.random.normal(mean, std, size).
Uniform:Â np.random.rand(size).
Â
Key Operations:
Dot Product: np.dot(a, b) or a @ b.
Matrix Multiplication:Â np.matmul(a, b).
Determinant:Â np.linalg.det(matrix).
Use Cases:
Data Cleaning: Handle missing values (np.nan).
Simulations: Generate random data (e.g., Monte Carlo).
Visualization: Plot histograms with matplotlib.
Access the full lesson here:Â NumPy For Statistical Analysis.
Â
Â